
Statistics 312 – Dr. Uebersax
27 – Exact tests

In this lecture we'll begin by addressing some final issue concerning chi-squared tests, including 
it's assumptions and limitations.  Then we'll discus s an alternative approach known as 'exact 
tests'.  Following this we'll conduct a classroom exercise.

1. Assumptions and Limitations of Chi-Squared Tests

Degrees of Freedom

Before proceeding to the assumptions and limitations of chi-squared tests, let's revisit the issue 
of degrees of freedom.  In the last lecture we learned that for a chi-squared independence test 
of two variables (i.e., with data organized as a contingency table), the df are  (R – 1) (C – 1), 
where R and C are the number of rows and columns.  Let's examine more closely why this is 
so. 

Consider the 2 x 2 contingency table below.  Assume that the row and column marginal 
frequencies (grey cells) are known.  If we then know that the frequency of cell (1, 1) is, say a,
this one number determines the frequencies of the other three cells (shaded blue).

Variable 2

Variable 1 Level 1 Level 2 Total

Level 1 a (30 – a) 30

Level 2 (40 – a) (30 + a) 70

Total 40 60 100

Thus we see that, if the observed marginal frequencies are fixed (which is an assumption of the 
chi-squared test of independence), then if we stipulate a frequency for a, the other three 
frequencies follow automatically.  The same is true if we stipulate cell (1, 2), cell (2, 1), or cell (2, 
2) – i.e., if we fix any one cell, all the other three follow.  Thus in a 2 x 2 table, we have only 1 df. 
This is what our formula predicts, because (R – 1) (C – 1) here is (2 – 1) (2 – 1) = 1.

Now consider a larger table, say a 3 x 3 one.
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Variable 2

Variable 1 Level 1 Level 2 Level 3 Total

Level 1 a b 60 – (a + b) 60

Level 2 c d 30 – (c + d) 30

Level 3 50 – (a + c) 40 – (b + d)
(a + b + c + d)

– 90
30

Total 50 40 30 120

Here we find that if we fix the marginal frequencies (gray cells) and stipulate values a, b, c and 
d for the four unshaded cells, then the frequencies in the remaining blue cells are determined. 
So here we have (R – 1) (C – 1) = (3 – 1) (3 – 1) = 4 degrees of freedom.  By the same 
reasoning we may see that for any two-way frequency table, the df are (R – 1) (C – 1).

Discontinuity

Now we'll look at some possible problems with the chi-squared test of independence.  The first 
is the discontinuity issue.  Recall that the χ² distribution for any given df  has a continuous 
shape:

And that to evaluate a test statistic like the Pearson X2 we consider areas in the upper tail of this 
distribution.

The continuous distribution implies that any value (≥ 0)  of χ² (x-axis) is possible.  However in a 
contingency table, especially with a small N, there are only a finite number of possible ways to 
arrange the N observations amongst the cells.  For example, given an extremely small N in a 2 
x 2 table, only a few arrangements are possible.
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Variable 2

Variable 1 Level 1 Level 2 Total

Level 1 1 0 1

Level 2 0 1 1

Total 1 1 2

That is, in this case where N = 2, if we consider the marginal frequencies fixed there are actually 
only two possible arrangements (1's on the main diagonal, or 1's on the off-diagonal cells).  This 
is an extreme case but the same principle applies generally:  in a two-way frequency table, 
there are only a finite number of arrangements of N observations, and therefore a finite number 
of possible values of the Pearson X2.  That means that χ² distribution, which is continuous and 
considers every value as possible, cannot correspond perfectly to our Pearson X2 test statistic, 
and that p-value we produce by integrating the χ² distribution are here only approximate at best. 

Small Frequencies

For this and possibly other reasons, a common rule-of-thumb suggests that the Pearson X2 test 
should not be used when more than 20% of the expected frequencies of a table are less than 5. 
And not used for a 2 x 2 table if any expected frequency is less than 5.

Discontinuity Correction

To account for this discontinuity issue, some statisticians add a correction term in the formula to 
compute the Pearson X2 statistic:
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The problem here is that not everyone agrees that the corrected version is better in every case. 
So now we have two formulas, neither of which is exactly correct – almost a worst state than 
before ('A man with two watches never knows the time.')

2. Exact Tests

It turns out, however, that there is a completely different approach to testing independence of 
two nominal variables that is exact.  These tests are in fact called exact tests, and are becoming 
increasingly popular.  
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You may recall reading in the book, or mentioned briefly in the lectures, that there is an 
alternative to the binomial distribution called the 'normal approximation to the binomial.'  This 
normal approximation seeks to cumulative binomial probabilities by making use of the fact that, 
for large N, and p not to close to 0 or 1, the discrete binomial distribution has somewhat the 
same shape as a normal distribution with mean Np and variance N p (1 – p).  

However you may also recall that I didn't teach the normal approximation to the binomial, 
suggesting that, since computers now let us calculate cumulative binomial probabilities exactly, 
even with very large N, the normal approximation – something developed in pre-computer days 
– was basically no longer necessary.

It turns out that we have the same situation when it comes to chi-squared tests of 
independence.  The approach we've considered in the last two lectures, based on calculating a 
test statistic and comparing it to a continuous theoretical χ² distribution, is just an approximation 
– yet today we have the computer power to compute exact values, just as we can compute 
exact binomial probabilities.

Consider again a 2 x 2 table.  Suppose the following are our expected probabilities of 
observations falling in each cell.

Variable 2

Variable 1 Level 1 Level 2 Total

Level 1 0.25 0.25 0.5

Level 2 0.25 0.25 0.5

Total 0.5 0.5 1.0

As already stated, if we cross-classify N observations on these two variables, there are only a 
finite number of possible outcomes.  And, given the above probabilities (and using the 
hypergeometric distribution, which is a generalization of the binomial distribution) we can 
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compute the probability of each possible observed distribution occurring.   This means that for 
some observed outcome – say 100 cases with frequencies of (10, 20, 30, 40), we can compute 
exactly compute the probability of this outcome or a rarer one (rare here meaning having a 
lower probability of occurring) out of all possible outcomes.  This is a p-value – an exact one – 
just as we can compute an exact binomial probability for, say, getting 3 or fewer 'heads' out of 
10 coin flips.

The exact test for 2 x 2 tables was actually developed around the 1920s by Ronald Fisher (and 
hence is called Fisher's exact test.  Being more computationally complex than the chi-squared 
test, however, it wasn't used much.  Now advances both in computing power and algorithm 
sophistication have made exact tests widely available – not just for 2 x 2 tables, but even for 
large contingency tables with large N's.

Many people, therefore, would consider these exact tests the state of the art, and would avoid 
using chi-squared tests with contingency tables altogether.

Example

Yesterday we considered data on voting preferences of male and female voters:

Outcome

Treatment Failure Success

Drug 1 10 20

Drug 2 40 30

We'll now analyze the same data using a online exact-test calculator here:
http://vassarstats.net/tab2x2.html

Note:  Online calculators for a wide range of  statistical tests are an increasingly common 
and viable alternative to purchased computer software.

Chi-squared test:  0.0291
Corrected chi-squared test: 0.0495
Exact test:  0.0486

JMP

JMP will also perform an exact test for an R x C table.  We first perform a chi-squared test, as 
shown yesterday.  Then, clicking the red arrow in the Contingency Analysis section (top) of the 
report, we select Exact Test > Fisher's Exact Test.

http://vassarstats.net/tab2x2.html
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The results will appear in the Tests section.

      

And now for something completely different....

Previously we've seen how to construct confidence intervals for various values, such as a 95% 
confidence interval for the mean, or a difference of means.  We did this based on the sampling 
distribution of a statistic assuming samples of some fixed size, N.  

In practice, however, and especially in quality applications, a somewhat different problem is 
encountered.  Before a study is conducted, you, as the experimenter or quality engineer, can 
decide in advance how large N should be.  The larger N is, the stronger your conclusions will be 
from a study, but also the more expensive the study will be.  

One way to approach this problem is to ask what sample size N would be necessary to obtain 
some pre-specified level of precision.
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Suppose, for example, we wish to estimate the performance of some manufactured electronic 
device, measured on some variable, like output voltage.  We believe the population standard 
deviation is 0.8 volts, and we wish to estimate from a sample the mean output voltage in the 
population.

Question;  how many units would we need to sample so that our 95% confidence limits are +/- 1 
volt of the population mean?

Hint:  to begin, recall the formula for the confidence limits of a sample mean:

Xcrit szXLL ×−=

Xcrit szXUL ×+=

The critical z value for a 95% confidence interval is 1.95.

As a class, derive the formula to estimate the required N so that the UL and CL of a 95% 
credible/confidence interval for the sample mean is exactly +/- E wide, i.e., CI95% = [mean – E, 
mean + E].
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