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This article presents a latent distribution model for the analysis of agreement on dichotomous or 
ordered category ratings. The model includes parameters that characterize bias, category definitions, 
and measurement error for each rater or test. Parameter estimates can be used to evaluate rater 
performance and to improve classification or measurement with use or multiple ratings. A simple 
maximum likelihood estimation procedure is described. Two examples illustrate the approach. 
Although considered in the context of analyzing rater agreement, the model provides a general 
approach for mixture analysis using two or more ordered-categon measures. 

I .  Introduction 
Consider a forest researcher who wants to survey the health of a tree species. Because the area to 
survey is large, the plan is to use several field workers, each covering part of the entire area. Tree 
status is assessed with a simple scale of "good health," "moderate healtli." and "diseased or unhealthy." 

Since different raters will supply ratings, it is important that they understand and use raticg 
categories similarly; ~f not, there should at least be some way to account for their differences. Therefore 
the researcher might conduct a pilot study where a certain number of trees are rated by all raters, and 
use this information to compare. evaluate, and improve ratings. 

The above typifies a class of rater agreement problems that often arise in biometry, social science, 
and-if we extend "ratings" to include diagnostic tests-medicine. We consider here useful statistical 
methods one might apply to such problems. Although the present concern is rating agreement, the 
approach is applicable in general to mixture estimation using ordered-category measures. 

Analysis of agreement data is sometimes limited to the calculation of omnibus indices, such as the 
kappa coefficient (Cohen, 1960). Recently, however, there has been emphasis on modeling such data 
(Agresti, 1992; Uebersax, 1992). Tanner and Young (1985a, 1985b) discussed log-linear models for 
agreement data. Agresti (1988) and Becker (1989, 1990) discussed extensions of the log-linear 
approach, based on assoc~ationmodels, and Darroch and McCloud (1  986) described a useful approach 
based on category distingzlishabilitj, and quasisj~mmetrj3. 

There is also now extensive literature on latent class models of agreement (see, for example, 
Alvord et al., 1988; Baker, Freedman, and Parmar, 1991; Dawid and Skene, 1979; Dillon and Mulani, 
1984; Espeland and Handelman, 1989; Gelfand and Solomon, 1975; Uebersax and Grove, 1990; 
Walter and Irwig, 1988), including special versions for ordered-category ratings (Clogg, 1979; 
Uebersax, 1993). Agresti and Lang (1993) recently combined latent class and quasisymmetry models 
to analyze rating agreement. We do not consider the advantages and disadvantages of these approaches 
here, but this is discussed by Uebersax (1 992). 

Another new development is latent trait models for agreement data. Uebersax (1988) discussed a 
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latent trait model for dichotomous ratings; similar models were considered in unpublished work by 
Darroch, and by Kraemer (1979), Quinn (1989), and Uebersax and Grove (1989). Everitt (1988), 
Everitt and Merette (1990), and Henkelman, Kay, and Bronskill (1990) presented related models 
which allow for ordered category as well as dichotomous ratings, but which are computationally 
demanding and require integration over several variables. 

The model here can be viewed as a special case of the Everitt and Henkelman et al. models. The 
present model is simpler and more easily estimated-for example, it requires integration over only 
one variable-but fits actual data very well. The simplification makes it easier to use alternative 
models to test hypotheses about raters and ratings. The present approach also includes a n  explicit 
parameterization of rater bias, category definitions, and measurement error, leading to many useful 
applications. 

In the psychometric literature, models similar to that here have been discussed for dichotomous 
items. Papers by Bock and Aitkin (1981) and Mislevy (1984) are especially profitable reading. 

Section 2 presents the model and considers parameter estimation, identifiability. and the statistical 
evaluation and comparison of models. Section 3 discusses model applications. Section 4 gives two 
examples that illustrate use of the approach. The final section considers possible limitations and 
extensions. 

2. Model 
The term "rater" is used here in a general sense that includes any method for assigning rating levels. 
One can distinguish three basic designs used to collect agreement data. The first is a f i sed  panel 
design, where the same raters rate each case in a sample. The second is a varj~ing panel design, where 
each case is rated by a separate randomly selected rater panel. The third is a replicatr measllrement 
design. where the same rating procedure is applied two or more times to  each case. The type of design 
affects the form of the model. We mainly consider fixed panel and replicate measurement designs 
here. For dichotomous ratings, the varying panel and replicate measurement designs are mathemati- 
cally equivalent. A more general discussion of the varying panel design is deferred until another 
occasion. 

2.1 Fixed Rater Panel 
Consider a continuous latent trait, denoted by 8. The latent trait is the quality that ratings assess, for 
example, symptom severity. We assume a population of cases and, in the present discussion, that the 
population contains two case types (we leave implicit extension to more than two case types). Case 
types correspond to different subgroups of cases-for example, cases with and without a disease. We 
d o  not observe a case's type directly, although, as we shall see, we may be able to  estimate it from the 
case's ratings. 

We assume normal distributions (usually overlapping) of latent trait levels for case types c' = 1 and 
c = 2. The distributions are defined by probability density functions gl(8) and g2(8), respectively. We 
further define 

.f;(8) = Xlgl(8) and h(8)  = Xz~z(8). 
The terms X I  and X2 denote the population prevalences of the two types, so that X I  + A, = 1. 

The overall probability density function of case trait levels is 

.f'(O) = J ( 8 )  + fi(8). 

The function f ( 8 )  defines a.finite mixture distribzrtion (Everitt and Hand, 198'1; Titterington. Smith, 
and Makov, 1985) where X I  and A? are the mixingproportions and gl(8) and g2(8) are the component 
densitj',fiinctions. 

Now consider N cases, each rated by R 3 2 raters on a scale with C ordered categories (we could 
allow different numbers of rating categories per rater, but d o  not here). We refer to rating categories 
by number, beginning with 1 for the lowest category and using successive integers for the others, and 
also number raters in an arbitrary order. 

The rciting probability ,filnctiol~ p,(kl8) gives the probability of rating category k ( k  = I, . . . , C) 
being assigned by rater j ( j  = 1, . . . , R )  for a case with latent trait level 8. Let x,, denote the rating 
level that rater j assigns to case i. The vector x,= (x , , ,. . . , X,RJ describes the pattern of responses by 
all raters to case i. The probability of pattern x, g v e n  a case with trait level 8 is n,pJ(s,I 8); note that 
this assumes independence of ratings conditional on latent trait level (conditional independence). Let 
T , denote the probability of x, given a randomly sampled case. Then 
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We parameterize the rating probability functions with a threshold model similar to Rasch (1980) 
and item response (Lord and Novick, 1968; Samejima, 1969) modeling. Each rater j is assumed to 
have a threshold t,k associated with each rating category k (k 2 2). A case's apparent trait level must 
exceed threshold tJk for rater j to use rating category k or above. 

A case's apparent trait level is assumed to vary about its true level. Variation in apparent trait level, 
which we equate with nzeaszirement error., is assumed normally distributed. Under this assumption, 
the probability of a case's apparent trait level exceeding a given threshold is given by the normal 
cumulative distribution function. However, the normal cumulative distribution function is closely 
approximated by a logistic ogive, and the latter is computationally advantageous (Lord and Novick, 
1968, p. 400). We accordingly define 

f o r j =  1 , . . . ,  R a n d k = 2  , . . . ,  C. 
The term a,corresponds to  measurement error for rater j ;  with use of the constant 1.7, 110; 

approximates the rater's measurement error variance. Each function *,~(8) defines the probability 
that a case with trait level 8 will exceed rater j's threshold for category k. Since we want to know the 
probabilities of a case's apparent trait level falling in each of the C intervals defined by the rater's 
thresholds, we define 

Equations (I),  (2) and (3) define the main elements of the model. 
The model simplifies with dichotomous ratings. Let s,,= 0 for a negative rating and s,,= 1 for a 

positive rating. We then define for each rater \k,(H) = { 1 + exp[l.7a,(t, - H)])-', where t, is rater j's 
threshold for a positive rating. The probability of rating pattern x, for a randomly observed case 
becomes 

We term (4) with the added restriction al= . . . = a~ = o the Rcisch rating ,node/. The components 
of this model are illustrated in Figure 1. 

The fixed rater panel design is probably the most common in practice. Details concerning the 
model for replicate measurement, of more specialized interest, are given in the Appendix. 

t l  t 2  t 3  

Latent trait level 
Figure 1. Components of the Rasch rating model with three raters. 
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2.2 Parameter. Ejtitncitron 
The parameters for the model are summarized as follows: (i) the mean and standard deviation of 
latent distribution gl(0), P,  and u1; (ii) the mean and standard deviation of latent distribution g2(0), 
P2 and g2; (iii) the mixing proportions X I  and X2: (iv) a measurement error parameter a, for each 
rater; and (v) a threshold t , ~for each combination of rater j and rating category k (k  3 2). 

Since X I  + X2 = 1, only either X I  or X z  must be estimated. Two constraints are required to fix the 
scale. Since it is the distance between p l  and P, that is important, we can define 

P I  = -6 and p2 = 6 

and estimate 6 rather than both PI  and p2; this supplies one scaling constraint. As the second constraint 
one can fix the value of 6 or a U, a,  or t parameter. Another way to fix the scale is to require that 
thresholds have zero mean and unit variance. To avoid convergence on a trivial solution with reverse 
ogives, cu parameters are required to be nonnegative. 

Let NT denote the number of threshold parameters and NE denote the number of measurement 
error parameters. For fixed panel designs NT = R ( C  - 1): NE = R if measurement error is allowed 
to vant across raters, and NE = I if measurement error is assumed constant. For a model with two 
normal latent distributions, the number of estimated parameters is NT + NE + 3, if u 1  and U r  are 
allowed to differ, and NT + NE + 2 if U ,  = u2 is assumed. 

Parameters can be estimated by maximum likelihood. Let J index each of S = CRpossible response 
patterns. The overall log-likelihood is 

where X ,  is the probability of rating pattern x,. calculated with equation ( I ) ,  and 11, is the observed 
frequency of this pattern. The maximum likelihood parameter estimates are those that maximize the 
log-likelihood function. Patterns for which n,  = 0 do not contribute to the log-likelihood and need 
not be considered; this is helpful when there are many raters and rating categories. 

Several algorithms can be used for estimation. For the examples here, a direct search optimization 
routine (Chandler, 1969) was used. A potential drawback of direct search algorithms is their slowness; 
to achieve good convergence (for example, a change in the log-likelihood of less than 10E-8) may 
require several thousand iterations. However, this is still feasible with a microcomputer. 

Estimation based on the EM algorithm is also possible (Bock and Aitkin, 1981: Mislevy, 1984), 
although the slow convergence of the EM algorithm is well known. More eMicient estimation might 
combine algorithms-for example, using an EM or direct search algorithm initially, and then a 
Newton-Raphson or similar algorithm once near-convergence occurs. 

Integration is done numerically, with discrete approximation of 0.  For the examples in Section 4, 
the latent trait continuum was represented by 101 equidistant points (quadrature points) from -10 
to +10, inclusive. This is probably higher resolution and a wider trait range than is required-with 
these data, use of 26 quadrature points over the range -6 to +6 produces vent similar results. For 
accurate representation of latent distributions, crl and U? must not be too small; a good strategy is to 
fix the smaller to 1, though it may require experimentation to determine which is the smaller. An 
upper constraint on a parameters (e.g., 10) should be used to guard against the possibility of their 
tending to infinity. 

For a unique solution the number of estimated parameters cannot exceed S - I. In some cases 
parameters may not be identified even though this criterion is met. This may occur for two reasons. 
First, R, C, and the latent distribution parameterization may be a nonidentifiable combination; the 
model is then not identified, regardless of observed data. Second, a potentially identifiable model may 
be nonidentifiable because of an unusual pattern of observed data. Also, parameters can be nearly 
nonidentifiable, in which case the G2 fit index (see section below) may not follow the theoretical chi- 
square distribution. 

A remarkable form of partial identlfiability applies to the Rasch rating model (Lindsay. Clogg, and 
Grego, 1991). One can express Rasch models in log-linear form (Cressie and Holland. 1983; 
Kelderman, 1984). Further, such models are neces.carily quasisymmetrical (Darroch and McCloud, 
unpublished manuscript). As a result, the Rasch rating model can fit data no better than the model 
of unconstrained quasisymmetry. With dichotomous ratings, unconstrained quasisymmetry entails 
2R - 1 parameters. If the Rasch rating model has more parameters than this. the a parameter and 
threshold parameters will be uniquely identified, but not the latent trait distribution parameters. This 
means that for the Rasch rating model R 3 4 is required when one assumes crl = uz and R 3 5 is 
required when U ,  # u2 is allowed. 



Identifiability is easily verified by evaluating the rank o f  the observed information matrix (- 1 times 
the matrix o f  second derivatives o f  In L relative to estimated parameters). This is convenient, since 
this matrix is often calculated to estimate standard errors (see Section 4.2). The matrix is o f  less than 
full rank for nonidentifiable models and/or data. The ratio o f  the largest to the smallest eigenvalue is 
an index o f  proper matrix conditioning; weak identifiability is indicated when this number is vent 
large, say above 10,000. One can also detect nonidentifiability by testing different start values and 
seeing i f  they result in different solutions with identical fit. 

Nonidentifiability can usually be resolved by simplifying the model or introducing plausible 
constraints. Identifiability has not been problematic with data so far examined. However, it may 
become more important i f  the model is extended to include more than two component distributions 
or multiple latent trait dimensions. 

2.3 Illotlel Fit 
The Pearson chi-square statistic X' or the likelihood ratio chi-square statistic G2  can be used to 
evaluate model fit. The X' statistic is calculated as X' = ~ , ( n ,- ti?,)'/ti?, and the G' statistic is 
calculated as G 2  = 2 z,n,ln(n,/tk,), where ti?, = hi;,and +, denotes the probability o f  the sth rating 
outcome calculated with maximum likelihood parameter estimates. Both statistics are asymptotically 
distributed as x', with degrees o f  freedom equal to ( S- 1 )  minus the number o f  estimated parameters. 

The difference in fit between two nested models can be assessed with the difference G' statistic, 
calculated as the difference in G' for the two models. The difference G' is also asymptotically 
distributed as x', with degrees o f  freedom equal to the difference in the number o f  estimated 
parameters for the two models. 

3. Applications 
The purpose o f  analyzing ratings varies from study to study. Sometimes a researcher has a set o f  
potential raters rate an initial sample, and uses the results to select raters with desirable characteristics. 
Another common situation is to analyze ratings made on an initial sample and to use this information 
to try to improve subsequent ratings. In some cases, the goal is to better interpret panel ratings that 
have already been made. 

One can distinguish three factors that cause raters to disagree. The first is bius, which we equate 
with a rater's thresholds being generally higher or lower than other raters' thresholds, resulting in 
generally higher or lower ratings. The second factor is rater differences in categous ~,idths,  the distances 
between adjacent thresholds. The third is imprecision associated with the rating process, or what we 
have already termed mea.sllr.ement error. Model parameters provide a means to describe and quantify 
each o f  thesz factors. 

3.1 Describing Rater Pet;formarzce 

A rater's mean threshold provides an index o f  overall bias. By portraying mean thresholds graphically, 

one can show raters their relative bias. Similarly, i f  threshold locations for each rater are plotted, 

raters can see when they have unusually wide or narrow category definitions and adjust thresholds 

accordingly. 


An obvious use o f  model parameters i s  to select from a set o f  raters those whose ratings seem mcst 
consistent with the latent trait. Earlier we noted that l/aZ closely approximates measurement error 
variance. Let g i  denote the variance o f  the latent trait (calculated from 6, XI, Xz, a , ,  and g2). The 
quantity u,/(gi + l/a;)li2 then estimates the latent correlation between true trait level and apparent 
trait level for rater j. The latent correlation provides a convenient index o f  measurement error. Higher 
values indicate that a rater's judgments are mainly guided by the trait. Lower values indicate a 
significant contribution o f  random error, or that the rater is evaluating cases according to unique 
criteria. Usually, one would prefer raters with high latent correlations and a's. O f  course, this is 
situation-dependent-some applications may benefit from maintaining rater diversity. 

3.2 Hypothe.sl~ Testing 
Rater differences in bias, thresholds, and measurement error can be statistically assessed by comparing 
the fit o f  unconstrained and various constrained models. 

Threshold duferences. One constrained model holds thresholds constant across raters-that is, that 
t i / ,= t2/<= . . . = tKii( k  = 2, . . . , C) .W e  term this the identical thresholds model. I f  this model fits 
well, and i f  the unconstrained model does not fit significantly better, one would conclude that raters 
do not differ either in terms o f  bias or category widths. 

W e  can separate these effects with two other constrained models. W e  term the first the .simple bias 
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model. This assumes that interthreshold distances are the same for each rater, but that threshold 
locations may vary from rater to rater by a fixed amount. In other words, let A, be a constant for 

-1,' j ' ,andjthe simple bias model states that, for any two raters j ;rater - t,,2 = l,i - t,,3 = . . . -
I,,. - I,.,. = A, - A,,. The simple bias model is nested within the unconstrained model, and the 
identical thresholds model is nested within the simple bias model. 

W e  can also require that bias be constant across raters, but permit raters to have different category 
widths. T o  do so we now define A, specifically as the mean o f  rater j's thresholds. The equal birrs 
rnodel assumes that A I  = . . . = A,?. The equal bias model is nested within the unconstrained model, 
and the identical thresholds model is nested within the equal bias model. 

Comparison o f  the simple bias and identical thresholds models tests the effect o f  differential rater 
bias. One can alternatively test this effect by comparing the unconstrained model and the equal bias 
model. For both comparisons the difference G 2statistic has R - 1 degrees o f  freedom. Comparison 
o f  the unconstrained and simple bias models tests differential category widths. This effect can also be 
tested by comparing the equal bias model and identical thresholds model. For both o f  these 
comparisons, the difference G' statistic has ( R  - I )  x ( C  - 2) degrees o f  freedom. 

Diferentlal merrsuretnent error. W e  term the requirement that cu, = . . . = cuu the equrrl measurement 
error constraint. Comparison o f  a model with this constraint and the corresponding unconstrained 
model tests the effect o f  differential measurement error. The associated difference G' statistic has 
R - I degrees o f  freedom. 

Constrained models can be used to test other hypotheses about thresholds, such as equal or 
symmetrical category widths within raters. 

3.3 A2.feasurement rind C l a ~ ~ i f i c a t ~ o n  ~trtll.Multiple Rrrtrng~ 
An advantage o f  multiple ratings is that they permit improved trait measurement. Let E(O lx,) denote 
the expected level o f  0 given observed rating pattern x,.Then 

and E(O Ix,) can be taken as a latent trait ccore for a case with pattern x,. This score should provide a 
better estimate o f  the latent trait than. for example. assigning integers to rating categories and 
averaging across raters because it takes differences in category widths and rater bias into account. 

A related application is case classification using multiple ratings. Let a , ,  denote the joint probability 
that a case belongs to case type c ( c  = 1 ,  2) and receives rating pattern x,. W e  calculate T , ,  by 

W e  can also calculate the conditional probability that a case belongs to type c given observed rating 
pattern x ,  as a , ,  = ~ , , , / a , .  

The a,,, terms correspond to what Lazarsfeld and Henry (1968) termed realrittnent probabi1itie.c. 
To  maximize correct classifications, one classifies each case as type I or type 2 according to whether 
a,,, or a,,' is larger. It is relatively simple to estimate various proportions o f  cases correctly and 
incorrectly classified (see following section) by this method. The relative value o f  correct and incorrect 
classifications can also be considered to classifp cases to maximize expected utility. 

One could extend this approach to develop adaptive ratirzg strategie.~. For example, each case could 
be initially rated by two raters. Only i f  the case cannot be classified with sufficient accuracy would 
other-perhaps more expert-raters be used. 

3.4 Estitnating Sensitivity, Specificity, and Predictive Validity 
A potential advantage o f  latent structure modeling o f  agreement is that it may permit estimation o f  
rating accuracy in the absence o f  a definitive criterion. Four common rating accuracy indices are 
sensitivity ( Se ) ,  specificity ( Sp ) ,  positive predictive validity (Pu+), and negative predictive validity 
(Pu-). These indices, applicable when there are two case types (e.g., positives and negatives) and 
dichotomous ratings, are defined as conditional probabilities. Sensitivity is the probability o f  a positive 
rating given a positive case. Specificity is the probability o f  a negative rating given a negative case. 
Positive predictive validity is the probability o f  a positive case given a positive rating. Negative 
predictive validity is the probability o f  a negative case given a negative rating. 

Uebersax (1988) showed how the parameters o f  the dichotomous latent mixture agreement model 
can be used to estimate these indices for replicate measurement or varying panel designs. Table 1 
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Table I 
Formu1a.c for. indices of estimated rating acciiracj9 given fixed panel tnodel 

Accuracy index Formula 

Sensitivity (Se ' )  Jpl, g2(0)*,(6) do 

Specificity ( S p ' )  gl(6)[l- *,(a1do 

Positive predictive validity (Pu+') 

j-e',f;(e)[l - *,(a1do
Negative predictive validity (Pu-') .I": f(U1 - *,(0)1 do 

vote: As in Figure l,.h(B)corresponds to the positive case type (i.e.. w2 > w I ) .  

shows comparable forr,ulas for Se' ,  Sp', P\.+', and Pr-' for fixed panel designs. W e  add primes to 
emphasize that these estimate rating accuracy relative to latent case type; for example, Se' is the 
probability o f  a positive rating given a case that belongs to the "positive" latent type 2. How well 
these values correspond to true rating accuracy depends on how closely the inferred case types 
correspond to true positive and negative status. 

From these indices other measures o f  rating accuracy can be obtained. For example, the proportion 
o f  cases that are @se positives is estimated as X l ( l  - Sp') ,  the proportion o f  .fulsc negatives as 
X z ( l  - Se'), and the total proportion o f  misclassified cases by the sum o f  these two numbers. The 
maximum possible proportion o f  correct ratings is estimated by the sum o f  the area under J ( 6 )  
from -= to y and the area under j;(6) from 1. to a,where J .  is the latent trait level where j;(B) and 

. f ? ( O )  intersect-that is, where f ; (  y )  =ji( y).  
The formulas in Table 1 are for individual raters, but we can extend the approach to estimate the 

accuracy o f  various aggregate decision rules. For example, consider a rule that requires unanimous 
positive ratings by R raters to classify a case as positive. W e  would then define a new rating probability 
function 

The formulas in Table 1-with p*(O) used in place o f  *,(6)-estimate Se'. SII',  Pu+', and Pu-' for 
this rule. 

The formulas in Table 1 can be used with ordered-category ratings by recoding the ratings to 
dichotomies. 

4 .  Examples 

4.1 Exumple 1 
Henkelman et al. (1990) presented (in their Figure 1 )  data for 298 cases examined for liver metastases 
with three imaging techniques. The three techniques were magnetic resonance imaging, radionuclide 
scintigraphy, and computed tomography; we refer to these as Test 1 ,  Test 2, and Test 3 ,  respectively. 
Results o f  each test were translated to an ordered-category scale with five levels o f  increasing evidence 
o f  metastases. Table 2 shows the frequency o f  various results. 

Henkelman et al. fit a multidimensional mixture model to these data by iteratively reweighted least 
squares. W e  show here that it is possible to represent the data more simply. W e  also demonstrate 
how, by statistically comparing the fit o f  nested models, we can test useful hypotheses. 

With sparse data such as these. X 2  and G' may not be appropriate to statistically test model fit. W e  
therefore temporarily collapse the three middle categories to create a less sparse 3 x 3 x 3 table. T o  
this we fit a model with two normal distributions with ul = u2; as a further precaution in testing this 
model's fit, cells are combined so that no expected frequency is less than 1 .  Values o f  X' = 9.93 and 
G' = 11.93 with 12 degrees o f  freedom ( d f )  result: the latent trait finite mixture approach therefore 
appears appropriate for these data. 

W e  now consider several models with the full data. First are two simple models that assume equal 
measurement error across tests-that is, a l  = N' = N j .  Model MI assumes a single normal distribution. 
Model Mz assumes two normal distributions with U ,  = uz = 1. W e  also consider two variations o f  
Model M?. Model M, is otherwise the same as M 2 ,  but pennits different measurement error across 
tests. Model M4 adds to Model M2 the assumption o f  identical thresholds across tests. 
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Table 2 
Cros.v-clu.v.v~ficritionof're.s~lltsof'rhree diugno.stic te.st.s,fi.otn Henltelman, KO!,, rind Bronskill (1990) 

Test 1 rating level 

1 2 3 

Test 2 
rating 

Test 3 
rating level 

Test 3 
rating level 

Test 3 
rating level 

level 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Test 1 
rating level 

4 5 

Test 2 
rating 
level 1 2 

Test 3 
rating level 

3 4 5 1 2 

Test 3 
rating level 

3 4 5 

The results are summarized in Table 3. It is not unusual that. as with Models M2 and M3,a decrease 
in G' is accompanied by an increase in X2-this is possible because maximum likelihood estimation 
minimizes G' but not X2. However. the large change in X' relative to the small change in G2  for 
these models-probably the effect o f  the sparse data-appears to support our initial caution concern- 
ing these statistics. Simulation studies (for example, Agresti and Yang, 1986) suggest that the difference 
G' test can be used even with relatively sparse data. 

For Model M I ,  G2 = 163.68 with 13 estimated parameters and 124 - 13 = 1 1 1 df .  For Model Mz, 
G' = 11 1.55 with 124 - 15 = 109 df.  The difference G' test is generally considered not appropriate 
to compare models that differ only in the number o f  component distributions (Titterington et al., 
1985). but it is impressive that Model M? reduces the G2 statistic by 52 on 2 df .  

Comparison o f  Models M2 and M3tests the effect o f  differential measurement error. The difference 
G2 statistic is equal to .60, with 17 - 15 = 2 df .  W e  therefore find little evidence that measurement 
error differs across tests. The maximum likelihood estimates (MLEs) for Model M2 and their estimated 
asymptotic standard errors are shown in Table 4. W e  discuss estimation o f  standard errors in Example 
2. The a value o f  .575 corresponds to a latent correlation o f  .87, which seems acceptably high. 

Comparison o f  Models Mz and M4 tests the effect o f  differing thresholds among the tests. The 
difference G2  is 12.45 with 15 - 7 = 8 d f  (P> . l ) .  Threshold differences among the tests are therefore 
statistically nonsignificant. Other comparisons with models that add the simple bias and equal bias 
restrictions to M2 further indicate that the tests do not differ significantly either in terms o f  overall 
bias or category widths. 

Table 3 
De~crrptiotz and fit offozlr. tnodel~ applied to dufa in Table 2 

Model Descriation d f  X G' 

MI  One normal distribution 111 138.89 163.68 
M? Two normal distributions 109 112.70 11 1.55 
M3 Two normal distributions and 107 118.87 110.95 

different measurement error 
across tests 

M4 Two normal distributions and 117 123.40 124.00 
identical thresholds 
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Table 4 

Pararneter estimutes and estirnuted standard errors (e.s.e.).forModel M2 of Table 3 


applied to data in Table 2 


Asymptotic Asymptotic 
Parameter Estimate e.s.e. Parameter Estimate e.s.e. 

2Toir p1 = -6, p, = 6. o = 1 (fixed). 

Whereas the model o f  Henkelman et al. used 25 parameters, we are able to represent the data fairly 
well with as few as 7 parameters. The results here suggest that the tests are very similar in terms o f  
measurement error. bias. and category definitions. Though we do not pursue it here. an interesting 
question with these data is the comparative accuracy o f  diagnosis based on single tests and various 
combinations o f  tests. This could be examined with straightforward application o f  the methods in 
Sections 3.3 and 3.4. 

For the second example, we analyze ratings o f  photofluorograms for evidence o f  tuberculosis by 
groups o f  eight diagnosticians. These data were originally reported by Yerushalmy (1956) and 
previously analyzed by Kraemer (1982) and Uebersax and Grove (1990). The first two columns o f  
Table 5 summarize the frequencies o f  cases with various numbers o f  positive ratings. 

The data correspond to a varying panel design with dichotomous ratings, so the methods and 
formulas in the Appendix apply. W e  consider three models. The first, Model M I ,  is a latent class 
model with two latent classes, which we consider for comparison; the two-latent class model is 
equivalent to a special case o f  the two-latent distribution model where ul = U. = 0 and 6 is fixed 
arbitrarily. Model M? assumes one case type with normally distributed latent trait levels. Model Mi 
assumes two case types with normal distributions and U, = = 1. The bottom o f  Table 5 shows the 
fit o f  the three models. 

For Model M I ,  G2  = 528.50, with three estimated parameters and 8 - 3 = 5 d f ;  the deviation o f  
this model from the observed data is substantial. For Model M2, G' = 157.67, with 8 - 2 = 6 df.  Fit 
is again poor. Model M3, however, fits the data very well, with G' = 2.38 and 8 - 4 = 4 df.  Table 6 
shows parameter estimates, estimated rating accuracy, and standard errors for Model M,. 

Table 5 
Obset.\.c~ci,lrequencie.s.fi~r cluta and espected,li.eyuencies Yerlrshalm!>(1 956) tlrberc~r1o.si.s 

for. threc ino~lels 

Number o f  Expected frequency 
positive Observed 
ratings frequency Model MI  Model M? Model M3 

0 13,560 
1 877 
2 168 
3 6 6 
4 42 
5 28 
6 23 
7 39 
8 64 

,\.ole: Model M I .  two latent classes; Model Mz, one nornial distribution: Model M,, two nornial distributions; 
;T = 14.867: expected frequencies rounded to nearest integer. 
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Table 6 
Purnrneter and ruter acclrrucjl estirnntes nrzci estimutel-1 stundcrrd errors (e.s.e.) 

for hfodel M3of'Tuhle 5 

Asymptotic Jackknife 
Parameter Estimate e.s.e. 

-- 

6 1.942 ,0862 
A 1 ,988 .OO 18 
A 2  .0 12 .OO 18 
01 1.148 ,0563 

1.132 ,1235 
Accuracy index 

Se' 
SP' 
Pu+' 
Pu-' 

'Vole PI = -6. p,  = 6;a = 1 (fixed). 

Standard errors were estimated by two methods. Estimated asymptotic standard errors were 
obtained as the square roots o f  the diagonal elements o f  the inverse o f  the observed information 
matrix. Derivatives were estimated with finite differences. 

The second method estimated standard errors using the delete-one jackknife procedure (Efron, 
1982); this also provides estimated standard errors for Se'.  Sp' ,  Pu+', and Pu-'. As shown, the 
asymptotic and jackknife standard error estimates for model parameters are very close. 

Finally, we use the parameter estimates o f  Model M3 to estimate the accuracy obtainable by 
requiring various numbers o f  unanimous positive ratings to classify a case as positive. Table 7 shows 
accuracy indices for decision rules that require unanimous positive ratings by panels o f  from one to 
five raters. As shown. Se' and Pu-' decrease as the criterion for positive classification becomes more 
stringent, whereas Sy' and Pu+' increase. To  illustrate how we might use this information, suppose 
that, to test a new treatment, one requires patients with a high probability o f  being positive. One 
would therefore want a classification procedure with a high Pu+'. Table 7 shows that requiring 
unanimous positive ratings by two raters gives much higher Pu+' than requiring a positive rating by 
a single rater. Still higher levels o f  Pu+' result from requiring unanimous positive ratings by three 
and four raters. Beyond this, however, increases in Pu+' are less impressive and must be weighed 
against the cost o f  additional raters. 

Table 7 
E.srimarc~c1 c~cc~rrucy nionbc~r:~ po.citil'e r~ting.s to c~f'deci.siori rilles tiiut reqzlire ~rrrio~ts of'ilnrrnir.i~ol~.v 

C IL ISS / [~~C U S ~U S  positive, irsing purrrrneter estimnfc.s,fijr Modc~l Mi c!f'Tnblc 5( I  

Number o f  
unanimous Estimated diagnostic accuracy 

positive ratings 
reauired Se' Su' Pu+' Pu-' 

W e  consider classification based on unanimous agreement merely as an example. Clearlp there are 
other decision criteria o f  the form ml-out-of-mz, where rvz is the number o f  raters and 1171 is the 
required number o f  positive (or negative) ratings, that one might consider (Gelfand and Solomon, 
1975: Uebersax, 1988). 

5. Discussion: Limitations and Extensions 
The present model makes some fairly strong assumptions-for example, that latent distributions are 
normal. Because model fit is statistically tested, there is some assurance that these assumptions will 
not be accepted when they are v e q  inconsistent with the data. Clearly other distributional forms can 
be considered. 
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Begg and Metz (1990) noted several potential limitations of latent distribution agreement models. 
For example, it may be difficult to identify a two-distribution model when the distributions are 
similar. A good strategy, therefore. is to initially test a one-distribution model, and if that provides 
adequate fit, to not consider a two-distribution model. However, one then does not obtain some of 
the advantages of a two-distribution model, such as a simple method for estimation of Se' ,  Sy', etc. 

The latent trait approach evaluates rating precision based on agreement with a latent c(1n.cen.su.s. A 
rater who tends to disagree with other raters will appear less accurate than others. even though the 
rater may be more accurate. It is important for the researcher to recognize that the latent trait map 
not be the same as the trait of interest-it map also reflect inappropriate criteria that raters share. 
Henkelman et al. (1990) found their approach led to conclusions similar to those obtained from 
analysis of an external criterion. There is a need for additional validation studies that compare the 
results of latent trait agreement models with criterion measures. 

Agreement studies often have limited sample sizes. In such cases it would probably be best to 
restrict attention to some of the simpler models discussed, for example, the simple bias model with 
equal measurement error. 

One way to express the present model is 1: = 0 + c,. where 0 is the latent trait level of a case, 
1; is its apparent trait level for rater j, and cJ is measurement error for rater j. As shown by 
Bock and Aitkin (1981) the model easily generalizes to multiple latent trait dimensions as J; = 

r,,, \t;,,,O,,, + cJ, where O,, ,  is a case's level relative to dimension m and \.I:,,, is rater j's weight for 
dimension rn. For instance, raters might base judgments of disease severity on two different factors 
(e.g., size and brightness of lesions on an image) but different raters may weight the factors differently. 
A multidimensional model should still not be difficult to estimate, since the complexity of integration 
depends only on the number of latent trait dimensions, which would ordinarily be few. 

Interestingly. the approach here can be viewed as a two-tiered latent structure model. A case's 
latent trait level does not tell, at least with certainty. type membership. In effect, latent trait level is a 
proximal or "manifest" latent variable, whereas type membership is a deeper or "latent" latent 
variable. Located latent class models, which have received recent attention (for example. Formann, 
1992; Lindsay et al., 1991; Uebersax, 1993) associate each latent class with a specific latent trait level. 
so that there is no distinction between case type and trait level. A systematic integration of located 
latent class and latent distribution models is a challenge for future research. 

The authors are indebted to Clifford Clogg. John Darroch, Mark Espeland, R. Mark Henkelman, 
Daniel Relles, Patrick Shrout, and Stephen Walter for comments on earlier versions of this paper. 
The authors also thank the editor for helpful suggestions and an anonymous reviewer for valuable 
contributions. 

Cet article presente un modele de distribution latente pour I'analyse d'agrement sur des notations en 
classes dichotomiques ou ordonnees. Le modele comprend des parametres qui caracterisent le biais, 
les definitions des classes, et l'erreur de mesure pour chaque notateur ou chaque test. On peut utiliser 
des estimateurs des parametres pour appricier la performance de la notation et ameliorer la classifi- 
cation ou la mesure en utilisant des &valuations multiples. Une estimation du maximum de vraisem- 
blance simple est dkcrite. Deux exemples illustrent I'approche. Bien, que considkri: dans le 
contexte d'analyse d'agrement de notation, le modele donne une approche genirale pour l'analyse 
de melanges utilisant les mesures de deux ou plus classes ordonnees. 
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Replicate Atfeasurement 

We now assume that each case is rated R times by the same rater or procedure. Case 1's ratings are 
summarized by a szlmmarj' rating vector t ,  = { u , , , . . . , u , ~ ) ,where u,/ ( k  = 1. . . . . C) is the number 
of times the case is assigned category k. Note that u, ,  = R.  

Let P, now denote the probability of summary rating vector t ,  for a randomly sampled case, 
obtained as 

The term p(kl8) is the probability of rating level k given trait level 0. The tern1 o, is the number of 
different orderings of ratings that result in summary rating vector v , ,  given by the multinomial 
formula 

For C > 2, we obtain p(kl0) from equations (2) and (3), but eliminate the j subscript throughout. For 
dichotomous ratings equation (A. 1) simplifies to 

where n is the number of positive ratings (i.e., \ ,  = ( R- n. n ) ) .Here we define 

where uc corresponds to the procedure's measurement error and t is the threshold for a positive rating. 
The parameters for the replicate measurement model are the same as for fixed panels, except that 

there is only one measurement error parameter and one set of rating category thresholds: accordingly, 
N E =  1 a n d N T =  C - 1. 

Let s now index each of S = (C + R - l)!/[R!(C - I)!] possible unique summary rating vectors. 
Equation (5) for In L again applies, but T ,  and n,  are now the probability and observed frequency of 
summary rating vector t , ,  and P, is obtained from equation (A.l). The X' and (;' statistics are 
calculated as described in Section 2.3. 

For varying panels with dichotomous ratings, one might assume that thresholds are normally 
distributed across raters. If so, the distance between the apparent trait level of a case and the threshold 
of a randomly selected rater is also normally distributed. This leads to a model identical in form to 
equation (A. 1). There are. however. two qualifications. First, with varying panels the interpretation 
of measurement error changes, since it now includes threshold variation associated with rater selection. 
Second, this does not account for possible dependencies between cases due to overlap in their raters. 
If the rater pool is large relative to panel size and raters are sampled randomly, such dependence can 
be expected to be negligible. If the rater pool is not large, an alternative would be to view the entire 
pool as a fixed panel, treating as missing rater x case combinations that do not occur-this assumes 
rater identities are known. 


