Modeling Approaches for the Analysis of Observer Agreement

JOHN S. UEBERSAX, PHD

PRACTICAL ISSUES CONCERNING the use of the kappa sta-
tistic to measure observer agreement were recently re-
viewed.! Given the many potential problems with kappa,
one may wonder if there are better ways to analyze agree-
ment data. In fact, there has been much recent work in this
area. The kappa statistic and similar omnibus indices reduce
all information about agreement to a single number. In con-
trast, recent authors have taken a modeling approach to
agreement, which has many advantages. This article’s pur-
pose is to acquaint radiology and other medical researchers
with new developments in agreement modeling. The sub-
ject’s scope precludes detailed treatment here. The current
goal is to provide an overview; more details are available in
the primary sources cited.

After reviewing several modeling methods and noting
their strengths and limitations, one method will be illus-
trated with actual data. Readers can use this example to
consider the suitability of agreement modeling to their re-
search.

General Considerations

We will consider here only agreement on ordered cate-
gory ratings, which are common in radiology research. We
will not discuss dichotomous or nonordered category rat-
ings, although some of the methods described here can be
adapted for their analysis. A more detailed review? includes
discussion of dichotomous and nonordered category rating
agreement.

The type of data we are concerned with occurs when N
cases are independently diagnosed or classified by two or
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more procedures. We use the word *“procedure’’ broadly. It
may refer to different diagnostic techniques such as imaging
modalities, or to different experts who review test results
and classify cases accordingly. Data are summarized as a
cross-classification table (Table 1), which shows the num-
ber of cases that receive each possible combination of rat-
ings across the set of procedures.

There are three reasons for collecting and analyzing such
data. The first reason is to describe the amount of agree-
ment among different procedures. With this goal, a statis-
tical method is preferred that not only assesses the amount
of agreement but also helps identify the causes of disagree-
ment.

Although simply quantifying agreement is sometimes the
main function of such data, deeper concerns frequently mo-
tivate its collection. Often, what we really want to know is
which procedure is most accurate. A second use of such
data, then, is to evaluate diagnostic procedures in the ab-
sence of a definitive comparison classification. By compar-
ing results of different procedures, one hopes to get a gen-
eral idea of the accuracy of each procedure. A basic
premise for this use of data is that if two procedures dis-
agree, at least one must be wrong.

A third use of such data is to determine the value of
diagnosis based on joint use of two or more procedures. In
this case, the statistical approach should include a way to
integrate the results of the procedures.

Approaches Considered

Table 2 summarizes recent contributions in the area. The
grouping of approaches is somewhat arbitrary, but empha-
sizes important distinctions among them.

Latent trait and latent class models are commonly sub-
sumed under the heading *‘latent structure analysis’’ (Laz-
arsfeld and Henry3). One also could view loglinear, asso-
ciation, and quasisymmetry models as forms of latent
structure analysis. There is a good analogy between latent
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TABLE 1. Cross-classification Table Summarizing the Resuits
of Three Tests* for Liver Metastasest
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TABLE 2. Recent Articles on Modeling Approaches to
Agreement on Ordered Category Ratings

Rating
pattern Test Test Test Observed Expected
(i) 1 2 3 frequency frequencyt
1 1 1 1 36 35.1
2 1 1 2 22 22.4
3 1 1 3 0 0.8
4 1 2 1 26 26.4
5 1 2 2 22 20.1
6 1 2 3 0 1.2
7 1 3 1 3 1.5
8 1 3 2 0 2.0
9 1 3 3 1 0.6
10 2 1 1 13 14.7
1 2 1 2 14 1.7
12 2 1 3 0 0.8
13 2 2 1 12 13.2
14 2 2 2 25 23.4
15 2 2 3 5 41
16 2 3 1 1 1.3
17 2 3 2 5 6.3
18 2 3 3 10 9.4
19 3 1 1 1 0.9
20 3 1 2 1 1.3
21 3 1 3 1 0.5
22 3 2 1 1 1.3
23 3 2 2 7 6.6
24 3 2 3 10 11.2
25 3 3 1 3 0.5
26 3 3 2 13 14.9
27 3 3 3 66 65.8

*1 = definitely negative result; 2 = marginal result; 3 = def-
initely positive resulit.

tAdapted from Henkelman et al.5

1For Model M3 of Table 3.

structure analysis and computed tomography. The idea is
that observed ratings (manifest variables) are due to unob-
served factors (latent variables). The first step of latent
structure analysis is to posit a plausible model that relates
observed ratings to latent variables. One then estimates the
values of the latent variables that are most likely, given the
observed data. Model fit is statistically examined by com-
paring the observed cross-classification frequencies with
those predicted by the model.

Latent Trait and Signal Detection Agreement Models

Uebersax and Grove* described methods for the analysis
of agreement based on latent trait analysis. Henkelman et
al® and Quinn® described similar approaches based on signal
detection theory. The latent trait and signal detection agree-
ment models are essentially identical and best viewed as a
unified approach. We use the term latent trait agreement
analysis (LTAA) to refer to both approaches.

The LTAA model assumes that a continuous latent trait
underlies ratings—for example, the latent trait may be dis-
ease severity or symptom salience. The model assumes that
each diagnostic procedure has thresholds along this contin-
uum that correspond to various rating levels. For example,
possible ratings by a procedure may be ‘‘no disease,”’
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“mild form,”’” and ‘‘severe form.’’ A rating of ‘‘mild
form’’ would be made if a case’s trait level falls above the
procedure’s threshold for ‘‘mild form’’ and below the
threshold for ‘‘severe form.”

This scheme elucidates three potential sources of dis-
agreement. First, ratings may disagree because one proce-
dure’s thresholds are systematically higher or lower than
another’s; in this case, we may think of the procedures as
differently biased. Second, procedures may have different
inter-threshold distances, which correspond to different ratr-
ing category definitions. Third, a case’s latent trait level is
assumed subject to random measurement error. That is, due
to various sources of ‘‘noise,”’ the apparent trait level of a
case, as registered by a procedure, may vary from its actual
latent trait level; consequently, the same case, viewed by
different procedures, may yield different apparent trait lev-
els.

The parameters of the complete LTAA model include: 1)
terms that characterize the distribution of the latent trait; 2)
the thresholds for each procedure; and 3) measurement error
parameters. The threshold parameters are used to estimate
bias and rating category definitions for each procedure.
Measurement error parameters are used to assess the preci-
sion of the procedures.

Figure 1 illustrates the basic model components. The ab-
scissa corresponds to latent trait level, which we denote by
x. The function f(x) represents the probability density func-
tion of latent trait levels; t; is the threshold that must be
exceeded to elicit from procedure i a rating level of category
j or above. The function p;;(x) gives the probability of a case
with each latent trait level x exceeding t;. For an actual
model, there would be many t; values and corresponding
p;j(x) functions.

The shape of p;(x) depends on the model of measurement
error. The ordinary assumption is that measurement error
causes latent trait levels to appear normally distributed
about their true levels. This assumption results in the ogive
shape for p;(x) shown in Figure 1.

It is important to note that measurement error applies here
only in a relative sense. Error is not assessed with respect to
“‘true”’ disease level, which would require a definitive com-
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Fig. 1. Components of the latent trait agreement model. La-
tent trait distribution f(x) results from a mixture of disease-
negative (left dotted line) and disease-positive (right dotted line)
cases; py(x) is the probability that a case with latent trait level x
exceeds diagnostic threshold t,.

parison criterion or ‘‘gold standard.’’ Instead, error pertains
to a procedure’s ability to measure the thing that all the
procedures measure in common. If we were dealing with
continuous ratings, error would be the difference between
one procedure’s rating and the average of all procedures’
ratings for the same case (assuming the ratings are compa-
rably scaled). The analogy applies here, though the me-
chanics differ, because we are dealing with ordered cate-
gory ratings. Consequently, if all procedures are inaccurate
but highly correlated, true measurement error will be un-
derestimated.

The LTAA approach has several advantages. One is that
it is based on a familiar and plausible diagnostic model.
Another is that the approach quantifies the factors of bias,
category definitions, and measurement error that contribute
to disagreement. Some LTAA models also permit infer-
ences about rating sensitivity, specificity, positive and neg-
ative predictive validity, and the area under the ROC
curve.*® These rating validity inferences require special
assumptions about the latent trait distribution; typically, one
assumes that the case population consists of two types—
disease-negative and disease-positive cases—and specifies
the form of the latent trait distribution for each type. An-
other advantage of the LTAA approach is that it provides
for the combination of ratings across procedures to yield a
single score or measure of the latent trait.

There are potential limitations of the approach as well.’
One is that the method restricts the latent trait distribution to
some easily parameterized form (eg, a normal distribution
or mixture of normal distributions). Another is that the pro-
cedure can be computationally demanding. Estimation al-
gorithms require iterative evaluation of integrals. With
many procedures and rating categories, calculations may
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require several minutes using a desktop computer. Of
course, this is more an inconvenience than a limitation, and
as computers and algorithms become faster, its importance
will lessen.

A factor complicating use of the LTAA approach is that
the number of procedures and rating levels affects whether
all model parameters can be uniquely estimated, that is,
under certain conditions, different combinations of param-
eter values may ‘‘explain’’ observed data equally well. This
requires an investigator to attend closely to the analysis, but
poses few serious obstacles. When all parameters cannot be
uniquely identified, it is usually possible to apply plausible
constraints to some parameters that enable the remaining
ones to be estimated.

The models of Uebersax and Grove* and Quinn® assume
a single latent trait dimension. This is equivalent to the
assumption that there is only one basic continuum of disease
or symptom intensity to which procedures are sensitive. The
Henkelman et al® model allows multiple latent trait dimen-
sions; however, this increases computational complexity. A
unidimensional model should be tried first. Experience sug-
gests that a unidimensional latent trait model is often satis-
factory.

Latent Class Agreement Models

Latent class agreement models assume that there is a set
of case subtypes, or latent classes, such that cases within
each latent class are essentially identical with regard to dis-
ease severity or symptom salience. For example, latent
classes might correspond to different clinical stages or man-
ifestations of a disorder. Latent classes also may represent
rough gradations of disease severity.

Dawid and Skene® considered a general latent class
agreement model for categorical ratings. Their model does
not fully account for the ordered category nature of ratings
such as we consider here, and may require estimation of
more parameters than are necessary. Latent class agreement
models for ordered category ratings are discussed by Clogg®
and Uebersax.'® The approach of Uebersax, termed *‘lo-
cated latent class agreement analysis’’ (LLCAA) is the most
theoretically based of these models.

The LLCAA model is essentially a discrete approxima-
tion of the LTAA model. The LTAA model portrays the
latent trait distribution as a smooth function (eg, a mixture
of normal distributions), whereas the LLCAA model por-
trays it as more of a histogram, with each latent class cor-
responding to a discrete location on the latent trait contin-
uum and accounting for a certain proportion of cases. With
enough latent classes, the LLCAA model can approximate
the LTAA model to any degree of precision. In practice,
though, a few latent classes often suffice to represent data
well. The advantages of the LLCAA model relative to the
LTAA model are that 1) it substantially reduces computa-
tional complexity, and 2) it does not restrict the latent trait
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distribution to an arbitrary form such as a normal distribu-
tion or mixture of two normals.

Aside from how they represent the latent trait distribu-
tion, the LLCAA and LTAA models are equivalent. Bias,
category definitions, and measurement error may be quan-
tified with the LLCAA approach just as with the LTAA
approach. The LLCAA model has not been used to estimate
rating accuracy indices such as sensitivity, specificity, and
area under the ROC curve, but it could be adapted for this
purpose. The LLCAA model is illustrated in the example.

Loglinear, Association, and Quasisymmetry
Agreement Models

Loglinear, association, and quasisymmetry agreement
models are a related set of approaches that derive from
standard techniques for categorical data analysis. Tanner
and Young'" discussed general loglinear agreement models;
these models are better suited for dichotomous and nonor-
dered category ratings than for ordered category ratings. For
ordered category rating agreement, Agresti'? and
Becker'*''* recommended an approach based on Good-
man’s'? association model; Tanner and Young'® discussed a
similar model for ordered category agreement,

Association agreement models have so far only consid-
ered agreement between two procedures, but this is not an
inherent limitation of the association model.'” The model is
easily understood. Let m;; denote the probability that a ran-
domly selected case receives rating level i by the first of two
procedures and rating level j by the second procedure. The
goal is to decompose In(1;) into specific components—this
is true of loglinear modeling in general, of which the asso-
ciation model is a special case. With the association model,
the components are: 1) the tendency of the first procedure to
make rating level i; 2) the tendency of the second procedure
to make rating level j; 3) for each (i,j), a term that reflects
the confusability of the two rating categories; and 4) when
i = j, an additional term that reflects the tendency of the
procedures to apply the same rating category.

The confusability terms (component 3 above) are con-
structed from additional parameters. Specifically, for each
procedure, each rating category is viewed as located on a
continuum—the category’s location is termed its scale
score. The confusability of two categories is a function of
the closeness of their scale scores. For example, the scale
scores of four rating levels might be (1, 2, 3, 4) for the first
procedure and (1.1, 2.7, 3.5, 4.2) for the second procedure.
One might then expect many cases to be assigned rating
level 3 by the first procedure and rating level 2 by the
second procedure, because their respective scale scores for
these categories (3 and 2.7) are relatively close. Scale
scores are analogous to the thresholds of the LTAA and
LLCAA models, but function differently. With the latter,
category definitions correspond to the intervals between ad-
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jacent thresholds. With the association model, the scale
scores themselves correspond to the rating categories.

The association agreement model has several advantages.
It represents rating bias with the parameters for components
1) and 2) above. Estimated scale scores can be graphically
portrayed and provide a convenient way to examine cate-
gory definitions and how they may differ across procedures.
The model also is computationally simpler and faster than
the LTAA and LLCAA approaches.

In part, this simplification is possible because the asso-
ciation agreement model does not consider case latent trait
levels. Because of this, it does not permit diagnosis based
on multiple ratings or inferences about sensitivity, specific-
ity, and other indices of rating accuracy. Another consid-
eration is that—unlike the LTAA and LLCAA models,
which attempt to represent the process of how ratings are
made—the association agreement model is not theoretically
based.

The quasisymmetry model for rating agreement (Darroch
and McCloud'®) is similar to the association agreement
model. The model permits consideration of more than two
procedures, but, for simplicity, we will suppose that agree-
ment between only two procedures is considered. The qua-
sisymmetry agreement model is again a specialized loglin-
ear model, and the goal is to separate In(r;;) into meaningful
components. The components for the quasisymmetry model
are the same as components 1), 2), and 3) above for the
association agreement model—specifically, the tendencies
of the two procedures to apply the various rating categories
and the confusabilities of categories. The emphasis is on
describing rating bias and category confusability.

Unlike the association agreement model, the quasisym-
metry agreement model does not model category confus-
abilities in terms of more basic parameters or derive under-
lying category scale scores. Thus, the quasisymmetry
agreement model does not, as with the association agree-
ment model (and the LTAA and LLCAA models), provide
a graphic representation of categories’ definitions. Still, it is
helpful to know which rating categories are most confused,
which may suggest changes in rating nomenclature. An-
other difference is that the quasisymmetry model implicitly
assumes that category definitions are the same for each
procedure; with the association model, this is an optional
assumption.

The quasisymmetry agreement model is based on a mul-
tiplicative signal detection model which is of some interest
in its own right. It assumes that each case has a general
tendency to elicit each rating category, and that each pro-
cedure has a general tendency to use each rating category.
A given rating is assumed to be jointly determined by both
factors. The model does not, however, estimate the former
tendencies.

Intriguing connections among association, quasisymme-
try, latent trait, and latent class models have been noted.
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Agresti and Lang,'® for example, showed how to include
latent classes in the quasisymmetry agreement model. In
some instances, association and quasisymmetry models pro-
duce identical results. Also, with dichotomous ratings, the
quasisymmetry agreement model may produce results
equivalent to LTAA and LLCAA models. These examples
suggest that there are other mathematical connections
among the models that have not yet been identified.

Example

This section illustrates one technique discussed above.
The LLCAA approach is selected because it is particularly
flexible and comprehensive. However, the example also
illustrates the agreement modeling approach more gener-
ally.

We consider data presented by Henkelman et al’ on three
imaging techniques for diagnosis of liver metastases. The
techniques are magnetic resonance imaging, computed to-
mography, and radionuclide scintigraphy; for convenience,
we term these tests 1, 2, and 3, respectively. Table 1 shows
the results of application of all three tests to each of 298
cases. Henkelman et al expressed each test’s results on a
scale with five gradations ranging from ‘‘definite negative
result” to *‘definite positive result.’” To simplify, we col-
lapse the three middle categories and express results on a
three-level scale with categories ‘‘definite negative result,”’
‘‘marginal result,”’ and *‘definite positive result.”” Column
5 of Table 1 shows the number of cases with each possible
combination of ratings on the three tests.

Table 3 shows the results of several LLCAA models ap-
plied to the data. Model fit is assessed with the X2 (Pearson
chi-square) and G? (likelihood ratio chi-square) statistics.
The X? statistic is calculated as 3,(f, — e;)%e;, and the G>
statistic is calculated as 2 2,f;In(f/e;), where f; is the ob-
served frequency of the ith rating combination, e; is the
expected frequency of the ith rating combination given pa-
rameter estimates, and summation is across all I possible
rating combinations (for these data, I = 3 X 3 X 3 = 27).
The number of degrees of freedom is equaltol — 1 — M,
where M is the number of independent estimated model
parameters.

Good model fit is indicated when the chi-square statistics
are close in value to their associated degrees of freedom.

TABLE 3. Results of Some LLCAA Models Applied to Data in

Table 1
Modei fit
Model Description X3+ G2t df
M 1 class + EME 503.90 406.90 20
M2 2 classes 33.21 30.54 16
M3 - 3 classes 21.07 18.95 14

EME: equal measurement error across tests.
*Pearson chi-square.
tLikelihood ratio chi-square.
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One also typically evaluates the statistical significance of
the X? and G* statistics. Probability values of approxi-
mately .1 or above generally indicate good fit.

Model M1 is a one-class model; it assumes case homo-
geneity with respect to the latent trait, which we view as the
severity or salience of liver metastases. Model M1 also
assumes that all tests have equal measurement error. This is
the simplest model possible for the data and corresponds to
the assumption of statistical independence of ratings. Be-
cause the model is implausible, its poor fit is reassuring.

Model M2 assumes that there are two latent classes of
cases and two associated latent trait levels. Although fit is
improved, the X? and G? statistics still show significant lack
of fit. Model M3 assumes three latent classes and improves
fit to a statistically acceptable level. It is important to keep
in mind that the latent classes serve mainly a heuristic and
pragmatic function. In reality, we would suppose the latent
trait to be continuous. However, the fit of model M3 indi-
cates that the presumably continuous distribution can be
satisfactorily approximated by a three-class discrete distri-
bution.

Table 4 and Figure 2 summarize the parameter estimates
of model M3. The estimates in Table 4 (left) characterize
the latent trait distribution. Results are arbitrarily scaled so
that the lowest and highest latent classes have latent trait
levels of —3 and 3, respectively. Most cases occupy the
two extreme latent classes, which correspond to strongly
negative and strongly positive cases, but 15.5% of cases fall
in a third, ambiguous class.

Table 4 (right) summarizes measurement error for the
three tests. Measurement error (or, strictly speaking, its
absence) is expressed as the estimated correlation between
true latent trait level and apparent trait level as registered by
a procedure. The estimated correlation shows how much
ratings are determined by signal rather than noise, and pro-
vides an index of rating precision. These correlations ordi-
narily range in value from 1 (perfect correlation; no noise)
to 0 (no correlation; all noise). The results indicate that the
three procedures are approximately equally precise.

Figure 2 plots the threshold estimates for model M3. For
each test, t, marks the location of the threshold for the
second rating level (‘‘marginal result’’) and t; marks the
location of the threshold for the third rating level (‘“definite
positive result’’). Some variability in threshold locations

TABLE 4. Parameter Estimates for Model M3 of Table 3
Applied to Data in Table 1

Latent trait distribution Measurement error

Correlation
Latent Trait with latent
class level Prevalence Test trait
1 -3.000 0.489 1 0.851
2 —0.584 0.155 2 0.831
3 3.000 0.356 3 0.847
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Fig. 2. Estimated threshold locations for Mode! M3 of Table 3
applied to data in Table 1.

across tests is evident. For example, test 1 has a higher
threshold for the second rating category than the other two
tests.

An asterisk marks the location of the mean threshold for
each test, which provides an index of overall bias. Figure 2
shows that the tests are fairly similar in bias. Differences in
threshold locations are often much more extreme than with
these data.

After a well-fitting model is obtained, one often tests
variations of the model. This permits statistical assessment
of the importance of specific effects. For brevity, we omit
such analyses here but can summarize the results of their
application to these data. A simple variation of model M3
requires that measurement error be equal across tests. The
fit of this model is not significantly worse than model M3.
This is consistent with the results in Table 4 (right), but
statistically verifies the observation that measurement error
does not significantly differ across tests. Other submodel
comparisons show that the tests do not differ significantly in
terms of overall bias, but that differences in category defi-
nitions are statistically significant.

Finally, the model can be used to integrate the results of
the three tests. One way to do so is to determine the prob-
ability of a case’s membership in each latent class based on
its ratings—this determination is made from model param-
eters with use of Bayes’ rule. A case may then be assigned
to the latent class to which it has the highest probability of
membership. An alternative is to use ratings to calculate
latent trait scores.'® These scores are continuous measures
that correspond roughly to the case’s location on the latent
trait continuum. Details are omitted here, but the method is
very simple.

The conclusions provided by the analysis are as follows.
First, from the poor fit of model M1, we concluded that the
tests’ ratings are not statistically independent. However,
model M3, with three basic case types and three associated
latent trait levels, represented the data well. The majority of
cases appeared to fall at the extremes of the latent trait
continuum. The fit of model M3 also affirmed the tenability
of the assumptions of the LLCAA model, namely a unidi-
mensional latent trait and a threshold model of diagnosis,
for these data. The tests appeared to be approximately
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equally precise and equally biased, but somewhat different
in rating category definitions. If these were human observ-
ers, the results would suggest how to direct efforts to im-
prove agreement. Specifically, the results indicate that ef-
forts should aim to make category definitions more similar
and to reduce measurement error overall.

Conclusions

This article reviewed several statistical modeling ap-
proaches for the analysis of rating agreement. Use of one
approach was illustrated with actual data.

The modeling approach is quite flexible and can be
readily adapted to the needs of a particular application.
There are many specialized uses of agreement modeling that
we have not considered. For example, one can use model
parameters to estimate the relative precision of diagnosis
based on different test combinations or sequences. In the
future, we will likely see refinements of these methods.
However, they are already sufficiently well developed to
provide useful tools for analyzing agreement.
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